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Why (and why not) proof assistants?

+ Remarkable success

+ “..fully certified world...”
+ Towards Self-verification of HOL Light [Harrison 2006]
+ A Formally Verified Compiler Back-end [Leroy 2009]
+ and some more...

+ “..impressive mathematics...”
+ The Four Colour Theorem: Engineering of a Formal Proof [Gonthier 2007]
+ Engineering mathematics: the odd order theorem proof [Gonthier 2013]
+ A formal proof of the Kepler conjecture [Hales+ 2015]

“...not for mathematicians...” [Wiedijk 2007]
“..nontrivial to learn...”

syntax, foundations, tactics

“.work...”

search, level of detail, automation



Why (and why not) proof assistants?

* But humans have learned how to do this “work”!

* Can someone do this for us?

e Can a computer do this for us?

* This is what we are trying in this project

* Try to automate the translation from informal to formall!

* In particular, try to learn such translation from aligned
informal/formal corpora



Learn parsing on big corpora: which ones?

Dense Sphere Packings: A Blueprint for Formal Proofs [Hales 2013]
* 400 theorems and 200 concepts mapped

* |saFoR [Sternagel, Thiemann 2014]
 most of “Term Rewriting and All That” [Bader, Nipkow 1998]

 Compendium of Continuous Lattices (CCL) [Gierz at al. 1980]
* 60% formalized in Mizar [Bancerek, Rudnicki 2002]
* high-level concepts and theorems aligned

* Feit-Thompson theorem (two books)
» formalized by Gonthier [Gonthier 2013] (two books)

* ProofWiki with detailed proofs and symbol linking
* General topology correspondence with Mizar
e Similar projects (PlanetMath, ...)



Traditional parsing approach:

* a language is designed manually in such a
way that:

* lexical tokens can be fully specified by some
regular language

* syntax analyzer can be fully specified by
some unambiguous context free grammar
(typically by deterministic CFG)

* semantic analyzer typically resolves types of
symbols and subtrees in a parsing tree,
checks semantic correctness of binders, ....

formal text input

lexical analysis

“:e

syntax analysis

.y

semantic analysis

<?

fully specified data structure
for further processing

R




Linguistic parsing approach:

all of these phases (or at least some of them) can be
learned (instead of encoding them manually) from
examples by machine learning

syntax (and mostly even semantic) analysis can be
done by ambiguous CFG with probabilities (PCFG) and
lexical analysis (in case of English) is often simple

examples for learning have same (or similar) structure
as parsing trees and they are called treebanks in this
domain.

rules and probabilities can be learned from treebanks

CYK or Early parser can be used for parsing such PCFG

informal text input

lexical analysis

<i

.y

syntax analysis

.y

semantic analysis

<?

|
several possible

solutions sorted by
their probability —

-




Comparison of
Traditional parsing

have strong semantics

it is fast due to deterministic algs

it can be hardly learn by machine

has only one correct solution

X

Linguistic parsing

does not have (or weak) semantics

statistical methods are used instead

It is relatively slow (cubic time)

can be learned by machine

has many possible solutions



CYK (CKY) algorithm for accepting sentence by CNF grammar

Example:

S->NPVP
VP -> VP PP
VP ->V NP
VP -> eats
PP -> P NP
NP -> Det N
NP -> she
V -> eats

P -> with

N -> fish

N -> fork
Det -> a
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Example:
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CYK (CKY) algorithm for accepting sentence by CNF grammar

Example:

S->NPVP
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N -> fish NP VP,V  Det - P Det N

N -> fork

Det -> a mm-mm-
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CYK (CKY) algorithm for accepting sentence by CNF grammar

Example:

S->NPVP

VP -> VP PP

VP ->V NP
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PP->P NP S
NP -> Det N
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P -> with

N -> fish
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CYK (CKY) algorithm for accepting sentence by CNF grammar

Example:

S->NPVP

VP -> VP PP

VP ->V NP

VP -> eats

PP -> P NP S

NP -> Det N

NP -> she - VP PP

V -> eats : - -

P -> with
B

N -> fish
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CYK (CKY) algorithm for accepting sentence by CNF grammar

Example:

S->NPVP

VP -> VP PP VP
VP ->V NP

VP -> eats

PP ->P NP S

NP -> Det N

NP -> she -
V -> eats

P -> with

N -> fish

NP VP, V Det N P Det N
N -> fork —

S NP NP



CYK (CKY) algorithm for accepting sentence by CNF grammar

Example:
S->NP VP

VP> VP PP v
VP ->V NP

VP -> eats

PP -> P NP S
NP -> Det N

NP -> she VP PP

V -> eats - NP NP
P -> with

N -> fish - VP,V Det N P Det N
N -> fork
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Experiments with Informalized Flyspeck

* Instead of using “real” informal mathematical text we obtain training
parse trees from informalized theorem statements of Flyspeck project.

e 22000 Flyspeck theorem statements informalized:
* 72 overloaded instances like “+” for vector add
e 108 infix operators

* all “prefixes” are forgotten
* real , 1nt , vector , nadd , hreal , matrix , complex
* ccos, cexp, clog, csin,
* vsum, rpow, nsum, list sum,
* all brackets, type annotations, and casting functors are deleted
* Cxand real of num(which aloneis used 17152 times)
* online parsing/proving demo system:

http://colo12-c703.uibk.ac.at/hh/parse.html



Statistical Parsing of Informalized HOL

1) Training and testing examples are exported form Flyspeck formulas

Example:

REAL NEGNEG: Ix.----x=x



Statistical Parsing of Informalized HOL

1) Training and testing examples are exported form Flyspeck formulae

Example:

REAL NEGNEG: Ix.----x=x

HOL Light lambda calculus internal term structure:

(Comb (Const "!" (Tyapp "fun" (Tyapp "fun" (Tyapp "real") (Tyapp "bool"))
(Tyapp "bool1"))) (Abs "A0" (Tyapp "real") (Comb (Comb (Const "=" (Tyapp "fun"
(Tyapp "real") (Tyapp "fun" (Tyapp "real") (Tyapp "bool")))) (Comb (Const
"real_neg" (Tyapp "fun" (Tyapp "real") (Tyapp "real"))) (Comb (Const
"real_neg" (Tyapp "fun" (Tyapp "real") (Tyapp "real"))) (Var "A0" (Tyapp
"real™))))) (Var "A0" (Tyapp "real™)))))



Statistical Parsing of Informalized HOL

1) Training and testing examples are exported form Flyspeck formulae




Statistical Parsing of Informalized HOL

Campesor>
2) Conversion into a Grammar Tree O
* Terminals exactly compose textual form
* Annotate each (nonterminal) symbol with its HOL type ()
* Also “semantic (formal)” nonterminals annotate
overloaded terminals Comwesar > Cpeboor
Example: = =

("(Type bool)" ! ("(Type (fun real bool)" (Abs ("(Type real)"  (a) Cmenes ) Caweenr > (=) ()

(Var A0)) ("(Type bool)" ("(Type real)" ($#real_neg --) ("(Type

real)" ($#real_neg --) ("(Type real)" (Var AQ)))) ($#= =
("(Type real)" (Var A0)))))) . @ @ o
Corresponding textual form: ! A0 -- -- A0 = AO & Qe



Statistical Parsing of Informalized HOL

3) Induce PCFG (Probabilistic Context-Free
Grammar) from the trees () e dmreatvooy >
* Grammar rules are obtained from the inner nodes of
each grammar tree @
Frample: Cort> oty
"(Type bool)" - | "(Type(fun real bool))*
"(Type(fun real bool))" - Abs (o) Cawerer > (=) Caerar
Abs - "(Type real)” "(Type bool)*"
"(Type real)“ - Var
Var - A0
"(Type bool)“ - "(Type real)® $#= "(Type real)” . @ @ o
$#real_neg -» --
e - - OINC



Statistical Parsing of Informalized HOL

3) Induce PCFG (Probabilistic Context-Free Grammar) from the trees
 Grammar rules are obtained from the inner nodes of each grammar tree
* Probabilities are computed from the frequencies

Example: freq: prob:

"(Type boo1)" - | "(Type(fun real bool))* 1 1/2
"(Type(fun real bool))" — Abs 1 1
Abs - "(Type real)” "(Type bool)*" 1 1

"(Type real)” - Var 3 3/5

"(Type real)* - $#real_neg "(Type real)” 2 2/5
Var - A0 3 1

"(Type boo1)“ - "(Type real)” $#= "(Type real)“ 1 1/2
$#real_neg -» -- 2 1
$#= > = 1 1



Statistical Parsing of Informalized HOL

3) Induce PCFG (Probabilistic Context-Free Grammar) from the trees
 Grammar rules are obtained from the inner nodes of each grammar tree
* Probabilities are computed from the frequencies
e Grammar rules are binarized for efficient parsing (by CYK algorithm)
(around 20K grammar rules in Flyspeck case )

Example: freq: prob:

"(Type boo1)" - | "(Type(fun real bool))* 1 1/2
"(Type(fun real bool))" — Abs 1 1
Abs - "(Type real)” "(Type bool)*" 1 1

"(Type real)” - Var 3 3/5

"(Type real)* - $#real_neg "(Type real)” 2 2/5
Var - A0 3 1

"(Type bool)* - N1 "(Type real)” 1 1/2
N1 - "(Type real)” $#= 1 1
$#real_neg -» -- 2 1
$#= — = 1 1



Statistical Parsing of Informalized HOL

4) The learning part is done

* Rules probabilities can be further tuned for even better parsing results
(Inside-Outside algorithm)

* Binarization should be designed with respect to possible reconstruction of
original grammar trees



Statistical Parsing of Informalized HOL

4) Now, CYK dynamic-programming algorithm can be used for
parsing ambiguous sentences

input:
* sentence — a sequence of words
e learned binarized PCFG

output:
* N - most probable parse trees

where N is a parameter of CYK algorithm that can significantly affect the
time complexity of parsing process



Problems with PCFG and CYK algorithm

* [t is not possible to guarantee Example: () Cmveammmnr >
same type of same variables on

different positions Cave)
* It is not possible to correctly
handle types of lambda Caoperr > Cppeteor >
abstractions
() Cwerr (=) Comwera
* Above simple
affects the parsing a lot! (20 Gorana > Cawerar> (=) ()
(D) G Coperar> ()
G



Problems with PCFG and CYK algorithm

e Standard PCFG cannot handle any context of grammar rules.
This effect can be seen on priorities of operators and type prediction of
overloaded symbols.

Example:

input sentence: 1 * X + 2 * X.

correct parsing tree:
(S (Num (Num (Num 1) * (Num x)) + (Num (Num 2) * (Num x))) .)

derived grammar rules:
S->Num.

Num -> Num + Num
Num -> Num * Num
Num ->1

Num -> 2

Num -> X



Problems with PCFG and CYK algorithm

e Standard PCFG cannot handle any context of grammar rules.
This effect can be seen on priorities of operators and type prediction of
overloaded symbols.

Example:

all possible parses according to the grammar:

1) (S (Num (Num 1) * (Num (Num (Num x) + (Num 2)) * (Num x))) .
2) (S (Num (Num 1) * (Num (Num x) + (Num (Num 2) * (Num x)))) .
3) (S (Num (Num (Num 1) * (Num (Num x) + (Num 2))) * (Num x)) .
4) (S (Num (Num (Num (Num 1) * (Num x)) + (Num 2)) * (Num x)) .
5) (S (Num (Num (Num 1) * (Num x)) + (Num (Num 2) * (Num x))) .

U\

probability of every parsed term is same =
P(S -> Num .): p(Num -> Num + Num) - p(Num -> Num * Num) - p(Num -> Num * Num)
- p(Num -> 1) - p(Num -> 2) - p(Num -> x) - p(Num -> x)



Problems with PCFG and CYK algorithm

e Standard PCFG cannot handle any context of grammar rules.
This effect can be seen on priorities of operators and type prediction of
overloaded symbols.

Example:

S->Num.
Num -> Num + Num

subtree extension rules

Num -> Num * Num
Num ->1
Num -> 2
Num -> X



Problems with PCFG and CYK algorithm

e Standard PCFG cannot handle any context of grammar rules.
This effect can be seen on priorities of operators and type prediction of
overloaded symbols.

Example:
The best (the most probable) parse according to the new grammar:

(S (Num (Num (Num 1) * (Num x)) + (Num (Num 2) * (Num x))) .)

Probability of the best parse =

p(Num => (Num 1) * (Num x))' p(Num => (Num 2) * (Num x))
y p(Num => (Num Num * Num) + (Num Num * Num))

- p(s -> Num .))



Parsing and Type-checking over Flyspeck
(without subtrees PCFG extension)

* 698,549 of the parse trees typecheck (221,145 do not)
e 302,329 distinct (modulo alpha) HOL formulae
* For each HOL formula we try to prove it with a single AlI-ATP method

e 70,957 (23%) can be automatically proved (but a significant part of
them are not interesting because of wrong parenthesation)

* In 39.4% of the 22,000 Flyspeck sentences the correct (training)
HOL parse tree is among the best 20 parses

* its average rank: 9.3



Parsing and Type-checking over Flyspeck
(with subtrees PCFG extension)

* combination of subtrees with depths from 4 to 8

+ 70957 {239%1) ? can be automatically proved

* In 39-4% 75.7% of the 22,000 Flyspeck sentences the correct
(training) HOL parse tree is among the best 20 parses

* its average rank: 93 1.9



Future Work

* More corpora -> more alignments -> more knowledge -> ...

* Smarter parsing methods
different shapes of subtrees
better matching patterns
neural networks instead of subtrees (or instead of the whole parser)

* Tighter integration of probabilistic parsing with semantic pruning

* Incremental self-learning system:
train on some data — parse — typecheck/prove the parses ...
... and thus get more data to train on - loop ...

* Implement backtracking into parsing process
in case there is a point without any provable parse

* integrate into Al/ATP self-improving systems (MalLARea, BliStr, ...)



